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Abstract

The main potential benefits of rainwater harvesting, namely water saving and storm water

management, are easily evaluable at a building scale when well-known behavioral models

are used. However, the evaluation is often more complex at an urban scale, due to a lack of

building characteristics and demographic data. In the present paper, we propose a method,

which is based on the representative building concept that can be used to quantify the

potential benefits of rainwater harvesting at different scales, that is, from the building scale

to the district and city scales. Particular attention has been paid to the sizing of the system

so that it can be used for different rainwater collection purposes. The method has been

applied to the city of Turin (Italy) considering different scenarios: 1) domestic use (e.g., toilet

flushing and the washing machine), where buildings are independent of each other, and 2)

two public uses (the irrigation of public green areas and street washing), for which we have

hypothesized that the rainwater collection takes place at a district scale. The non-potable

water saving for domestic use varies across the city from 29% to 62%, according to the char-

acteristics of the buildings, while the reduction of the flow peak conveyed to the sewerage

system, during extreme storms, is quite constant (in the 57–67% range). Irrigation and street

washing require a lower amount of water, thus about 80% of water can be saved, but the

retention efficiency is low, and a slight reduction in the flow peaks can be expected. The aim

of the methodology presented in this work is to provide a suitable decision-making tool for

policy makers and urban planners to evaluate the capability and efficiency of rainwater har-

vesting systems for buildings, districts, and cities.

1. Introduction

There is no doubt that the ongoing population growth and the better socio-economic condi-

tions, besides offering evident advantages, have also produced negative consequences on natu-

ral resources, including water [1, 2]. The increase in emissions has impacted the water cycle
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and the ongoing fast climate changes will likely decrease the availability of water in several

countries [2]. Moreover, the increase in impervious surfaces, due to urbanization, with the

consequent reduction in aquifer recharging, has modified both the surface runoff and flows

directed to sewerage systems during rainfall events, thus raising the risk of urban floods [3].

An imperative need for a sustainable water management also emerges from the Sustainable

Development Goals (SDGs) proposed by the United Nations, which should be reached before

2030: among others, Clean Water and Sanitation (SDG n. 6), Sustainable Cities and Commu-

nities (SDG n. 11) as well as Responsible Consumption and Production (SDG n. 12) are all

related to the availability of water for everyone, a correct urban flood management, and a sus-

tainable use of water [4].

About 70% of the water collected from rivers, lakes, and groundwater systems around the

world is used for husbandry, irrigation, and food production, 20% is used to support industrial

needs and the remaining 10% is used for domestic activities [2]. In the last few decades, a great

deal of effort has been devoted to the implementation of Rainwater Harvesting (RWH) systems

as a source of water in both urban and rural contexts, as these systems can significantly con-

tribute to decreasing the environmental footprint [5, 6]. Storing rainwater can produce several

benefits, depending on the specific use of the water: e.g., a reduction of water and energy con-

sumption, an improvement of air quality, a mitigation of the Urban Heat Island (UHI) effect,

water cycle restoring and urban flood mitigation. A list of the possible uses of rainwater is

given in Table 1.

With an effective RWH system, more than 30% of the domestic use could be satisfied by

rainwater at the building scale: e.g., toilet flushing, the washing of clothes, the cleaning of

floors, car washing, etc. [7–12] as could the watering of domestic green spaces [13, 14]. Inter-

esting uses of rainwater have already been proposed for public services, such as road washing

and the mitigation of road dust diffusion [15, 16], the irrigation of green public areas, the

flushing of public toilets and for firefighting purposes. In these cases, an RWH system should

be considered at the district scale. Rainwater has also been considered for domestic cooling

systems [17, 18] and for electricity production, through the installation of micro-turbines in

gutters [19]. The mitigation of the UHI effect and the related reduction of the energy demand

for air-conditioning can be reached by spraying rainwater to absorb heat from the air (e.g.

ornamental fountains) or over building and urban surfaces [20–23].

RWH also has positive impacts on hydraulic infrastructures. RWH systems retain water

and reduce runoff, and thus lower the frequency of failures of drainage systems as well as the

frequency of urban floods [24–26]. Finally, a partial restoration of the urban water cycle can be

obtained by coupling RWH with such Nature-Based Solution (NBS) as Sustainable Urban

Table 1. Common uses of rainwater collected in an RWH system.

Main goal Possible use References

reduction of water consumption domestic use (toilet flushing, washing machines) [5, 7–12]

irrigation of green areas [13, 14]

improvement of the air quality spraying water to reduce road dust [15, 16]

reduction of energy consumption heat pump for heating or cooling domestic water [17, 18]

electricity production (micro hydropower in gutters) [19]

heat absorption through water evaporation [20]

mitigation of the Urban Heat Island

effect

heat absorption and increase in humidity through water

evaporation

[21–23]

urban flood mitigation storm water retention [24–26]

water cycle restoration groundwater recharging [27, 28]

https://doi.org/10.1371/journal.pone.0278107.t001
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Drainage System (SUDS) techniques, which allow rainwater to infiltrate into the ground,

groundwater to be recharged, and the urban runoff to be reduced [27–29]).

The impact of an RWH system is mainly related to two aspects: the availability of rainwater

and the water demand. The former depends on the climatic conditions (see Asadieh and Kra-

kauer (2016) [30]), while the latter varies according to the uses of the rainwater: for example,

toilet flushing and street cleaning clearly require different amounts of water and have distinc-

tive temporal patterns. For these reasons, a detailed understanding of the possible uses of col-

lected water is necessary to evaluate the appropriateness of an RWH system.

The behavior of RWH systems, at the building scale, has been studied extensively in the last

few years (see, for example, Campisano et al. (2017) [5] and references therein). On the other

hand, there is still a lack of knowledge about the impacts of RWH systems at larger scales. For

instance, the reliability of RWH system at regional and country scales has usually been estimated

through a per year balance between the total rainfall and the annual water consumption [31–33].

More accurate simulations of RWH performances have been conducted at urban scale, but these

have been limited to multi-unit blocks or multi-family buildings [34, 35] or to a neighborhood

[36–38]. Among the studies that have considered cities as a whole, mention can be made to that

of Ghisi et al. (2006) [39], who used a rainfall-water consumption balance to show that the poten-

tial water saving that could be achieved in 62 Brazilian cities ranged from 34% to 92% (average

69%). Belmeziti et al. (2013) [40] proposed a method that takes into account the water usages and

storage capacities of different buildings, and they showed that the results obtained in a district in

Paris (France) were different from those obtained when considering the balance between the total

rainfall and water consumption of the municipality. Bocanegra-Martı́nez et al. (2014) [41] pre-

sented an optimization model to design an RWH system based on cost minimization, and they

applied this model to the urban area of Morelia (Mexico). Lúcio et al. (2020) [9] suggested a scale-

adaptive methodology to evaluate the potential of rainwater harvesting at the urban scale, taking

into consideration the characteristics and consumption patterns of the buildings. Islam et al.

(2021) [42] analyzed the effect of climate change on the performances of an RWH system that

provides water to the community of Paikgacha (Bangladesh).

In the present paper, we propose a method that can be used to quantify the efficiency of

RWH systems at different scales: from the building scale to the district and city scales, using

databases that contain the characteristics of buildings and demographic data together with

land use data. The method has been applied to the urban area of Turin (Italy) considering dif-

ferent scenarios: domestic (e.g., toilet flushing and the washing machine) as well as public uses

(e.g., the irrigation of public green areas and street washing). The potential reduction of the

flow peak conveyed to a sewerage system during extreme storms has also been analyzed for the

domestic use case. The aim of the methodology is to provide a suitable decision-making tool

for policy makers, practitioners, and urban planners to evaluate the capability and efficiency of

RWH systems for buildings, districts, and cities.

2. Materials and methods

In RWH systems (Figs 1 and 2), rainfall collected by catchment surfaceH, is conveyed,

through gutters, to storage tank S, from which a water supply system distributes rainwater to

users. The tank would be useless if the water demand pattern were equal to the rainfall one,

but this situation is obviously very uncommon. Moreover, the quality of the rainwater should

be carefully controlled, especially for domestic use, and a device that diverts the first flush often

has to be installed [5].

Since urban development produces a huge variety of buildings, a detailed analysis of the

performance of each building is not feasible. Therefore, a method that can be used to
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schematize the heterogeneity of buildings should be introduced, and a group of representative
buildings should be identified (see Lúcio et al. (2020) [9]). The performances of representative

buildings can then be analyzed and extended to all the buildings they represent. In this way, it

is possible to estimate the performances of an RWH system at the district or city level.

Fig 1. Scheme of a domestic rainwater harvesting system.

https://doi.org/10.1371/journal.pone.0278107.g001

Fig 2. Scheme of a rainwater harvesting system for public use: Green area irrigation and street washing.

https://doi.org/10.1371/journal.pone.0278107.g002
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For domestic uses, a scenario is imagined in which all the buildings of the district/city are

equipped with an appropriately sized RWH system. For other uses, such as the irrigation of

public spaces and street washing, the analysis concentrates on the district scale, and it is

assumed that a few tanks (at least one) are present in each district.

The method used to analyze the performance of an RWH system and to size it is explained

in the following subsections, then the building classification approach is shown, and, finally,

the method used to quantify the performances at the district and city scales is presented.

2.1 The RWH system: Sizing and efficiency index

Different approaches, ranging from deterministic to statistical ones, have been proposed to

size and evaluate the efficiency of an RWH system (e.g., [7–9, 43–45]). Among the different

methods, the so-called behavioral models, which are based on rain collected data and water

demand patterns, make use of finite difference schemes to simulate the water balance of a

tank. In this paper, we use the behavioral model proposed by Lúcio et al. (2020) [9]: unlike the

widely used Yield After Spillage (YAS) or Yield Before Spillage (YBS)methods (see Fewkes and

Butler (2000) [7]), this model considers that a fraction of the daily inflow is conveyed to the

tank before the distribution of the daily water supply.

The core of the model (see Figs 1 and 2) is the following water balance equation for the

tank:

Vt ¼ Qt þ Vt� 1 � Yt � Ot ð1Þ

where Vt is the volume of water contained in the tank after the inflows and outflows that occur

in interval t, Qt is the rainwater volume that enters the tank, Yt is the rainwater volume sup-

plied to the users and Ot is the overflow volume. The subscript t refers to a generic time step,

1<t<T, where T is the total simulation period. The duration of the time step depends on the

aim of the simulation: a daily time step is usually considered for a water saving analysis [5, 8,

46], while a one-minute time step is used for the analysis of the reduction of runoff peaks [24].

The model is solved through a finite-difference scheme.

As far as the inflow to the tank is concerned, not all the rainwater that falls onto a roof sur-

face can be used, because a certain amount of water is lost through evaporation or is diverted

through first flush diversion due to its low quality. Hence, the inflow is computed as:

Qt ¼ ðφ � Rt � fftÞ � H ¼ Nt � H � fft ð2Þ

where Rt is the rainfall depth, φ is the runoff coefficient and fft is the first flush diversion. In

this way, Nt = φ�Rt�H is the net rain volume. Typical values of φ and of the first flush are 0.8

[46, 47] and 1 mm per rainy day [48, 49], respectively. In the case of a runoff reduction analy-

sis, where the time step is short, Qt is zero in the earlier time intervals, as long as the sum of the

consecutive fft is lower than 1 mm.

The terms Yt and Vt in Eq (1) are computed with the following algorithm [9]

Yt ¼ min

Dt

Vt� 1 þ a � Qt

S

and Vt ¼ min

Vt� 1 þ Qt � Yt

S � Yt þ ð1 � aÞ � Qt

S

ð3Þ

8
>>><

>>>:

8
>>><

>>>:

where Dt is the non-potable water demand, which depends on the use patterns (e.g. domestic,

irrigation, street washing, etc.), and the coefficient α represents the fraction of rainwater con-

veyed to the tank before the daily supply (α varies between 0 and 1). Preliminary results, not

shown here for the sake of brevity, indicated that, in our case study, the α value has little impact
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on the RWH performance indexes. For this reason, we chose α = 0.5, whereby half of the net

rainwater volume collected on the roof is conveyed to the tank before the daily supply.

Two quantities are computed for each time step to evaluate the retention efficiency of

RWH systems and the reduction of runoff peaks:

swt ¼ Qt � Ot ð4Þ

Ft ¼ Ot þH � fft ð5Þ

where swt is the volume of the retained rainwater, and Ft is the volume of the rainwater dis-

charged into the sewerage system.

Two additional quantities are required for the following analysis: the annual rainwater vol-

ume collected on roof Q, which is computed considering only the runoff coefficient and

neglecting the first flush, and the annual non-potable water demand D.

2.1.1 Size of the tank. In theory, an optimal tank should be a tank for which the water sav-

ing efficiency EWS is maximum. EWS represents the ratio between the total rainwater volume

supplied to the user to the total demand for specific use

EWS ¼
PT

t¼1
Yt

PT
t¼1
Dt

� 100 ð6Þ

i.e., the higher the efficiency is, the larger the volume of saved potable water. Water saving effi-

ciency is evaluated for a period long enough to represent the hydrologic regime and assuming

an empty tank at the beginning of the period [8, 46, 50]. Different tank capacities are consid-

ered, and the minimum capacity should respect the S/Q�0.01 constraint, as a daily time step is

used [7].

The water saving efficiency, EWS, grows according to the tank capacity: it first grows

remarkably fast as function of the tank capacity, and then the increase progressively slows

down. The maximum water saving efficiency is obtained for very large tanks, which means

both a difficult installation and perhaps even economic unfeasibility.

In practical situations, a water saving efficiency that is below the maximum achievable

often has to be accepted, and a rule to choose the most appropriate tank size is therefore

needed. In the case of the domestic use of rainwater, as a first step, we adopted the Italian Stan-

dard method [46, 51]: tank capacity S is 10% of the minimum between the annual inflow Q
and the annual demand D. Subsequently, we checked that the water saving efficiency obtained

with this criterion was satisfactory, that is, at least 80% of the maximum achievable [30, 51]: if

the test had failed, a larger tank would have been considered until 80% of the maximum EWS
was reached.

We found no rules in the literature for the other considered rainwater uses (irrigation and

street washing), and we therefore selected the tank size for which the water saving efficiency is

80% of the maximum value.

Once the tank size had been defined according to the above-described rules, it was consid-

ered appropriate to evaluate the retention efficiency of the RWH system as [9, 24]:

ER ¼
PT

t¼1
swt

H
PT

t¼1
Rt
� 100 ð7Þ

However, it was not possible to reach a retention efficiency of 100%, due to the presence of

first flush diversion and to the loss of water through evaporation or retained by the roof. In

fact, the retention efficiency of a tank increases as the volume of water stored in the tank
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increases. Moreover, it is null when the tank does not store water, for instance when the rain

inflow is equal to the first flush.

2.1.2 Reduction of the runoff discharge. A comparison between the maximum flow dis-

charged during intense storms, with and without an RWH system, should be made to quantify

the reduction of the runoff discharge to the sewerage system. According to Campisano and

Modica (2015) [24], the efficiency of the peak reduction per building and for a storm event is

given by:

EPR ¼ 1 �
FðtrÞ
NðtpÞ

 !

� 100 ð8Þ

where F(tr) is the maximum rainwater discharge released by a building equipped with an

RWH system and N(tp) is the maximum discharge which, in the absence of an RWH system,

would flow directly to the sewerage system.

The tr and tp times can be different, due to the presence of a tank, and, consequently, the

efficiency of the peak reduction is a function of the tank size, the rain intensity, and the level of

water in the tank at the beginning of a storm. A short time step, i.e. one minute [24], should be

considered to analyze the behavior of the tank during a storm event, and the initial water level

in the tank is provided by the previous simulation that adopts a daily time step. The first flush

diversion should be considered carefully: we have assumed that the first flush is conveyed to

the sewer at the same time than it occurs, hence, an RWH system is not able to reduce the run-

off at the beginning of a storm.

2.2 Choice of representative buildings

It is not feasible to consider buildings one by one to analyze the performance of an RWH at

the district or city scale, and it is more convenient to work with classes of buildings. Each class

is identified by a representative building, and an appropriate number of representative build-

ings should be chosen. Lúcio et al. (2020) [9], for instance, suggested a number of representa-

tive buildings that represented at least 40–50% of the total building stock. In our work, we

focused on classes with a higher frequency than 10%.

Three parameters are considered to identify a representative building: the roof area (i.e.,

harvesting area), the inhabitants (related to the water demand) and the number of buildings

that it represents in the specific class. Unfortunately, data about building roof areas and the

inhabitants of buildings are often lacking in ready-to-use statistical classifications, and meta-

data often have to be used to identify representative buildings: e.g., the number of apartments,

the number of floors, the district population, the number of families and the average area of

the apartments.

2.3 Performance at the district and city scales

The evaluation of the water saving and runoff reduction of a building can now be extended to

the district and city scales. If the water saving efficiency is computed for each representative

building, the water saving efficiency, E�WS; can be obtained for an ensemble of buildings (i.e., a

district or a city) from the ratio between the volume of rainwater supplied to the users to the

volume of requested rainwater in the examined reference period

E�WS ¼
PK

k¼1
nk �

PT
t¼1
Ykt

PK
k¼1
nk �

PT
t¼1
Dkt
� 100 ¼

PK
k¼1
EWSk � Dk � nk

PK
k¼1
Dk � nk

� 100 ð9Þ

where K is the number of building classes at the considered scale, Dk is the volume of rainwater
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requested in the reference period by the representative building for the k building class, nk is

the number of buildings that belong to the k class, and EWSk is the corresponding water saving

efficiency. The efficiency of RWH systems at the considered scale depends on the water saving

efficiency, the rainwater demand and the numerousness of each representative building.

The same method is applied to evaluate the reduction of the peaks of the runoff discharge

introduced into the sewerage system. The volumes discharged by all the buildings in the dis-

trict/city are summed at each time step, in both the presence of RWH and in its absence. In

this way, the efficiency of the peak reduction can be quantified through

E�PR ¼ 1 �
F�ðtrÞ
N�ðtpÞ

 !

� 100 ð10Þ

where F� is the highest flow rate discharged by all the buildings supplied by RWH systems, N�

is the highest rainwater flow rate in the absence of RWH systems, and tr and tp are their time

peaks, respectively. The E�PR index is computed for each storm event and the mean value is

then computed.

3. Non-potable water demand

Quantification of the non-potable water demand is a key issue in assessing both the economic

convenience and the hydraulic efficiency of an RWH system. In this study, three rainwater use

scenarios have been considered: (1) domestic use (mainly toilet flushing and washing clothes),

(2) the irrigation of public green areas and (3) street washing.

The domestic use is evaluated as the product between the non-potable water demand per

capita and the number of people, P, living in each building. A daily demand pattern is used to

size the rainwater storage tank, while a sub-daily demand pattern is considered during the

analysis of the runoff peak reduction.

The water demand for irrigation and street washing is based on the extension of the irri-

gated and street surfaces, as well as the specific water demand (l/m2 or mm). Several methods

(e.g., Penman-Montheit, Hargreaves) have been developed to estimate the specific water

demand of crops as a function of the soil moisture, evapotranspiration, and rainfall [52, 53],

and a daily time step can be used to describe the variation of all these quantities over the year.

However, for the purposes of this paper, we have evaluated the specific irrigation demand as

the difference between the daily evapotranspiration and rainfall, and a negligible retention

capacity of the soil has been considered. The specific water needs for street washing depend on

the municipality: in this work, the washing frequency and water demand have been based on

information made available by the local waste management company.

4. Case study

The case study focuses on Turin (northern Italy—45˚04’N 7˚42’E), an Italian city of about

870000 inhabitants located at a mean altitude of 240 m a.s.l. The climate in Turin (Cfa, Humid

subtropical climate—according to the Köppen-Geiger classification) is temperate, without a

dry season, and it is characterized by a hot summer (the average temperature in the hottest

month is more than 22˚C), while winter is the driest season. Precipitations are concentrated in

two periods, the first ranges from April to June and the second is in November, with an annual

average rainfall depth of about 850 mm.

The city of Turin (Fig 3) is characterized by a part on the plain, on the west, and a hilly part

(max 600 m a.s.l.), on the east (eastern parts of districts G and H), and these two parts are

divided by the River Po, which flows from South to North. The city occupies a land area of
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about 130 km2, two-thirds of which are urbanized, while the last third is composed, by two-

thirds, of private and public green areas and the remaining part of woods, which are mostly

widespread in the hilly part of the city [54, 55]. The part of the city on the plain appears to be

almost completely urbanized and is organized in a regular network of streets and avenues,

while the hilly part is characterized by a quite steep slope and some small valleys, with many

woods and meadows.

In this paper, we have considered the administrative subdivision of the city [56], which con-

siders the presence of ten districts (Fig 3), to take advantage of existing databases. The north-

ern part of district A is the city center, that is, the ancient part of the city (in a very

recognizable Roman style) together with the most western part of district G: this area is charac-

terized by low-rise buildings (max. six floors) with a large floor extension and few green areas.

In a more external belt, which comprehends the southern part of district A, the western part of

H, the most eastern part of C and D, and the western part of G, urbanization is more recent

(Industrial Revolution, late 1800s - early 1900s), while the remaining districts in the plain area

of the city were mainly built after World War II, especially during the Economic Boom (from

the 1950s to 1970s): in this case, the distribution of buildings is more heterogeneous than in

the old part of the city, with both low-rise buildings (1 floor) and high-rise buildings (up to 15

floors). Urbanization is quite scarce on the hilly side of the city (G and H on the east): several

ancient and more recent country houses are present in this hilly environment, as well as

detached houses and blocks of flats, often with private gardens.

Table 2 shows data collected for the different districts which are used in the next sections.

The public green spaces include several elements (e.g., parks, gardens, flowerbeds, avenues

Fig 3. The city of Turin and its administrative districts.

https://doi.org/10.1371/journal.pone.0278107.g003

PLOS ONE Water savings and urban storm water management: Potentiality of rainwater harvesting at the urban scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0278107 November 23, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0278107.g003
https://doi.org/10.1371/journal.pone.0278107


with trees and woods) that are partially irrigated by the municipality (in most cases, using

drinking water). In this work, we have focused on the irrigation of the park area with RWH

systems. The extension of the irrigated park areas is a datum that is only available at the city

scale: for this reason, the ratio between the irrigated park area and the total park area in each

district has been assumed equal to the ratio computed for the whole city. The irrigated area of

the city is about 1 km2 [57] and the total parks area is about 6.9 km2 [58].

There are few parks in the oldest parts of the city (district A), while there are frequently

very large parks in the most recent districts (e.g., the large “Parco della Pellerina” in district D,

near the Dora River). Moreover, the parks in the hilly districts (G and H) are extremely large.

As far as the RWH for street washing is concerned, the areas used for vehicular traffic

(streets, roads, squares, etc.) in each district were considered. Their extension was obtained

from land use digital maps [55] and the overall area amounts to 13.8 km2 for the whole city.

In this paper, residential buildings have been considered, in terms of collected rainwater for

domestic use, park irrigation and street washing. Residential buildings play an important role

in the Turin urban context and they cover up to 50% of the land area occupied by all the

buildings.

The representative buildings were selected using land use digital maps [55] as well as popu-

lation statistics and a building census [59]: i.e., the population and number of families, classifi-

cation of the buildings according to the number of floors, and the number and average area of

the apartments.

After several tests, we chose (Table 3) from 3 to 6 representative buildings per district: each

representative building was selected in such a way that it was representative of at least 10% of

the buildings in the district. Table 3 also shows the inhabitants P and the roof area H of each

Table 2. Main features of the municipal districts.

municipal districts

A B C D E F G H L M Total

quarters Centro

Crocetta

Santa Rita

Mirafiori

Nord

Borgo San

Paolo

Cenisia

Cit Turin

Pozzo

Strada

San Donato

Parella

Campidoglio

Borgo

Vittoria

Madonna di

Campagna

Lanzo

Lucento Le

Vallette

Regio Parco

Barca Bertolla

Barriera di

Milano

Rebaudengo

Falchera

Villaretto

Aurora

Vanchiglia

Sassi

Madonna del

Pilone

Borgo Po

San

Salvario

Cavoretto

Nizza

Millefonti

Lingotto

Filadelfia

Mirafiori

Sud

land area

(km2)

6.89 7.31 8.60 9.09 15.57 25.52 22.53 16.53 6.49 11.86 130.39

population

(inhabitants)

75966 100574 127187 95238 121608 102188 83381 55109 73095 38021 872367

mean family

size

1.9 2.1 2.0 2.1 2.2 2.2 2.1 2.0 2.1 2.3 2.1a

roof area H
(km2)

1.58 0.94 1.43 1.26 1.30 1.64 1.49 1.30 0.78 0.50 12.2

irrigated area

Ir (103 m2)

18 45 19 145 61 142 179 272 63 96 1040

H/Ir (-) 88 21 75 9 21 12 8 5 12 5 11.7b

street area St
(km2)

1.34 1.16 1.46 1.23 1.78 2.21 1.59 1.14 0.76 1.08 13.8

H/St (-) 1.2 0.8 1 1 0.7 0.7 0.9 1.1 1 0.5 0.89b

a) Weighted arithmetic mean with the population as a weight

b) Ratio between the total areas

https://doi.org/10.1371/journal.pone.0278107.t002
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representative building, as well as the percentage of the buildings in each district that corre-

spond to each representative building type. It was also checked that both the total population

and the total roof areas, that is, according to our choice of the representative buildings

matched the total roof area and population data in each district. The estimated values were

computed by multiplying the population and the roof area of each representative building by

the number of the buildings it represented. In this way, the water demand and collected rain-

water volume obtained from our model matched the available data for each district.

4.1 Domestic use of rainwater

In this scenario, all the buildings in Turin have been considered to be equipped with a tank,

and domestic use of the rainwater has been assumed. The non-potable water demand per cap-

ita for domestic use was considered equal to 50 liters/(person�day), and constant during the

year [46]. On the basis of these hypotheses, the amount of non-potable water needed in Turin

was calculated to be about 16�106 m3 per year.

A thirty-year-long rainfall pattern was considered for the simulations for the whole city,

using the data collected at two rain-gauge stations managed by the regional Environmental

Protection Agency [60].

4.1.1 The best tank design and water savings. The tank volumes were selected after a

series of simulations, as explained in Section 2.1.1. The best tanks were distributed throughout

the city in the following way: 7–10 m3 for 16% of the buildings, 12–18 m3 for 35% of the build-

ings, 20–35 m3 for 21% of the buildings, and 35–63 m3 for 28%. The sum of the tank capacities

over the whole city is about 8.65�105 m3.

The parameters that mainly affect the water saving efficiency of a building are the tank

capacity and the harvesting area per capita,Hpc =H/P, which is proportional to the ratio

between the rainwater availability and the water demand. The water saving efficiency is shown

Table 3. Total number of buildings in each district; frequency (%—plain), population P (inhabitants—bold) and roof area H (m2—italics) of the representative

buildings in each district.

municipal district

A B C D E F G H L M

Number of buildings 3110 2768 5144 4203 4452 4668 4416 4311 1747 1339

13% 12% 22% 11% 12% 15% 13% 25% 13% 19%

11 6 12 6 2 2 2 2 12 2

240 200 200 200 100 100 100 120 190 100

34% 18% 38% 20% 11% 13% 15% 18% 25% 15%

22 12 24 12 4 4 4 4 25 5

460 200 300 200 100 100 100 120 385 100
53% 23% 40% 35% 12% 14% 14% 16% 62% 13%

29 25 32 25 7 7 6 6 55 7

600 200 300 200 200 200 200 240 520 200
47% 34% 18 18% 15% 12% 14%

59 32 13 13 13 12 14

500 500 200 200 200 240 200
19% 16% 17% 12% 13%

26 27 25 24 27

200 400 400 475 400
28% 24% 26% 17% 26%

65 56 42 38 79

600 800 700 750 900

https://doi.org/10.1371/journal.pone.0278107.t003
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in Fig 4 as a function of the roof area per capita for different storage fraction values. The lines

in Fig 4 were obtained by simulating Eqs (1) to (3) with Turin rain data. EWS grows according

toHpc for a fixed S/Q value. The circles in Fig 4 represents the results obtained from simula-

tions of all the representative buildings in the districts, according to the tank sizing rule

described in Section 2.1.1. As can be seen, most circles are very close to the S/Q = 0.1 curve

suggested by the Italian Standards method (Section 2.1.1). It is worth recalling that the water

saving efficiency reached by each representative building is at least 80% of its maximum value.

Most representative building data are characterized by values ofHpc in the 10–25 m2/person

range and by water saving efficiencies of between 30% and 70%.

The curves in Fig 4 come close to each other for small and largeHpc, which shows that the

tank size is irrelevant for Ews when the roof area is very large with respect to the inhabitants,

because the rainwater inflow is high, or whenHpc is very small, i.e., there is just a slight need of

storage [8, 14].

It has been deemed interesting to map the water savings efficiency at a district level (Fig 5 -

left), to denote the impact of different urbanistic systems as well as the zones where RWH is

more efficient. The color scale refers to the minimum and maximum reported values (the same

criterion is used in the following). The water saving efficiency varies over the 29–62% range:

high values are achieved in districts with highHpc, such as the districts in the hilly part or in the

ancient part of the city (A, F, G, H) where family houses or quite low-rise buildings (maximum

5 floors) are very common. Nevertheless, the district water saving not only depends onHpc, but

also on the rainwater demand of each representative building (see Eq (9)): for instance, the

most frequent building (one-family house) in district H has a high efficiency (97%), but a lower

water need, than other representative buildings, thus the district efficiency reaches just 62%.

The water savings efficiency for the whole city is 42%, which means that almost half of the

non-potable water needs of residential houses could be satisfied by rainwater harvesting. In

terms of volume, the city of Turin could save about 6.6�106 m3 of drinking water in one year,

distributed over the districts according to Fig 5 (right).

It is also interesting to observe the retention efficiency (Fig 6): the quantity of collected rain-

water is about 65% of the amount of rainwater that falls onto the roofs in Turin, in the refer-

ence period, and this is a volume of rainwater that is not conveyed to the sewerage system.

Fig 4. Water saving efficiency as a function of the roof area per capita for different storage fraction values. The

dots represent the performances of the representative buildings.

https://doi.org/10.1371/journal.pone.0278107.g004
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4.1.2 Reduction of the sewage flow due to the domestic use of rainwater. The scenario

presented in Section 4.1.1, with all the residential buildings collecting rainwater for domestic

use, is now examined focusing on the reduction of runoff from residential buildings and con-

veyed to the sewage system.

A time step of one minute has been adopted for this analysis and 23 storm events have been

identified from the rain-gauge station data of Turin [60]. These storms are the annual events with

the highest 10-minutes intensity. On the basis of the available information on domestic water use,

the sub-daily water demand pattern has been drawn up for the simulation with a time step equal

to 1 minute. The selected pattern shows two peaks (at 9 a.m. and at 9 p.m.) with a peak coefficient

pc = 2.5 (i.e., the ratio between the peak of the flow rate and the daily mean value).

The results of the simulations are shown in Fig 7 for each district, where the average runoff

peak reduction efficiency for the 23 storm events has been mapped. The peak reduction effi-

ciency obtained from the residential buildings is quite uniform, varying between 57% and

67%. It can be observed that the presence of the first flush diversion can affect the results to a

great extent, because the rainwater collected in the first stages of the storm (when it is most

probable that the rainfall peak occurs) is all conveyed to the sewage system, thus, the RWH sys-

tem is likely to be inactive during the initial phase of the storm.

4.2 Public use of rainwater: Irrigation and street washing

The rainwater collected on the roofs of residential buildings can also be used for public pur-

poses. We have assumed that, in the case of the irrigation of public areas (parks, flowerbeds,

etc.) or street washing, rainwater is stored in just a few large tanks (at least one) placed in

appropriate locations (e.g., they could be near the parks of interest for irrigation purposes)

where water can easily be withdrawn and conveyed to the irrigation plant or to tank trucks for

street washing. An important difference between domestic and public use is that, in the latter

case, rainwater can be used far from where it is collected and it may not be necessary to involve

all the buildings in the collection of rainwater to avoid the construction of an extended collec-

tion network that might not be feasible.

The harvesting area can be chosen by policymakers who should balance the extension of

the rainwater catchment and the size of the tank to obtain the desired water saving efficiency;

to this aim, useful diagrams are provided in the following sections.

Fig 5. Domestic use of rainwater. Left: water saving efficiency. Right: average annual volumes of saved water

(thousands of m3 per year).

https://doi.org/10.1371/journal.pone.0278107.g005
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4.2.1 Irrigation of urban green spaces. The irrigation of green areas is one of the activi-

ties that can involve rainwater; the necessity of the first flush diversion should be discussed.

However, the first flush diversion has been considered in this study. For simplicity, irrigated

public green areas, which are usually composed of a mixed group of plants (e.g., grass, trees,

bushes, flowers, etc.), are considered as meadows. The water demand for irrigation is quanti-

fied using the simple pattern of the meadow evapotranspiration proposed by Buzzacchi et al.

(2008) [61] in a study on the Po River basin: i.e., 2.4 mm/day in April, 5.8 mm/day from May

to July, 4.8 mm/day in August and 3.7 mm/day in September. The irrigation system, which

could be a sprinkler irrigation plant, is considered to be completely efficient with negligible

water losses. The water requirements for the irrigation of the whole city amount to about

720�103 m3 per year, but are concentrated in the April to September period.

The diagram in Fig 8 (left) proposes a tool for the design of RWH tanks. This tool is the

result of simulations of different S/Q values with reference to the thirty year-long rainwater

series. The ratio between the rainwater catchment area and the area to be irrigated is shown on

the horizontal axis. After several trials, we selected a water saving efficiency of 80% and a stor-

age fraction of 0.02 to have a good water saving efficiency and reasonable tank size, so that the

H/Ir ratio is about 5. It is worth observing that the maximum obtainable E�WS of RWH for irri-

gation purposes can reach 100%.

Fig 6. Domestic use of rainwater. The retention efficiency of each district.

https://doi.org/10.1371/journal.pone.0278107.g006
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It results, from the data in Table 2, that just a few buildings in some districts (e.g., districts

A and C) need to be involved in rainwater harvesting for park irrigation purposes; in fact,H/Ir
is larger than 5 if all the district building are considered. In other districts (e.g., H and M), the

whole catchment surfaceH has to be used.

Fig 7. Domestic use of rainwater. The runoff peak reduction efficiency for each district. The map shows the mean

value of 23 storm events.

https://doi.org/10.1371/journal.pone.0278107.g007

Fig 8. Irrigation. Left: dimensionless graph used for tank design purposes. Right: average water savings in one year

(103 m3) and the required capacity of the tanks, in brackets (103 m3).

https://doi.org/10.1371/journal.pone.0278107.g008
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Fig 8 (right) shows the water savings per year and the required capacity of the tanks, for the

selected efficiency E�WS equal to 80%. The average water saving for the whole city is 577�103 m3

per year and the total storage capacity required is about 71�103 m3, that is, less than 1/10 of the

storage capacity for domestic use. With these tanks, the retention efficiency of the city is about

6%. The expected low value of retention efficiency is a clear indicator of a low capacity to

reduce the runoff peak.

4.2.2 Street washing. Street washing in Turin is carried out by tank trucks that spray

high-pressure water over the road surface. A water consumption of 0.2 l/m2 and a cleaning fre-

quency of once a week (on Wednesday) have been hypothesized in this study, on the basis of

the information made available by the local waste management company. The water require-

ments of the whole city amount to about 143�103 m3 per year.

A diagram like those in Figs 4 and 8 has been made to decide how many buildings need to

be involved in the rainwater harvesting (Fig 9, left). In this case, the value ofH/St is shown on

the horizontal axis, where St is the washed street area. After several trials, we selected a water

saving efficiency of 80% and an S/Q = 0.01 to obtain a good water saving efficiency and tanks

that were not too large, thus the requiredH/St is 0.075. As in the case of RWH for irrigation

purposes, the maximum obtainable E�WS can reach 100%. Fig 9 (right) shows the mean volume

of water saved per year and the storage capacity required for each district. The water saving at

the city scale is 115�103 m3 and the required storage capacity is 7.2�103 m3. As expected, the

retention efficiency of the whole city is very low (about 1%).

5. Conclusions

This paper analyzes the potential reduction of the consumption of drinking water as a result of

rainwater harvesting in the city of Turin in three scenarios: 1) all the residential buildings are

equipped with an appropriate tank for domestic use (toilet flushing and washing clothes), 2)

the irrigation of green public spaces, and 3) street washing, using only a few public tanks and

involving only a certain number of buildings. Moreover, the domestic use scenario has also

been studied pertaining to storm water management, focusing on the reduction of the dis-

charge peaks introduced into the drainage system. A simplified schematization of the city has

been used, considering just a few types of representative buildings.

The non-potable water requirement for domestic use is the largest of the three considered

uses and, at the city scale, rainwater can substitute just 42% of this, which corresponds to 15%

Fig 9. Street washing. Left: dimensionless graph used for tank design purposes. Right: average water savings in one year (103 m3) and the required

capacity of the tanks, in brackets (103 m3).

https://doi.org/10.1371/journal.pone.0278107.g009
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of the overall domestic water demand. Different water saving efficiencies have been reached

for the municipal districts, mainly as a function of the roof area per capita, with higher efficien-

cies wherever low-rise buildings are more common. Although good performances pertaining

to storm water management can be expected, the sewers should not be downsized (e.g.,

decreasing diameters), to face possible faults of the RWH systems. In addition, a sensitivity

analysis of the influence of the first flush on storm water management could be conducted in

future research. Irrigation and street washing require a lower water consumption, thus about

80% of it can be saved. Although not done in this study, it is possible to consider a mix of the

different uses: for instance, irrigation and street washing uses could be almost completely satis-

fied by rainwater.

The economic and practical feasibility of RWH systems are two of the most important

problems that limit their implementation in existing settlements [5]. The space required to

install a tank can also be a drawback and, especially for private uses, an RWH scheme that

groups a small number of buildings (e.g., building blocks) might be more feasible and useful

than having one RWH system for each building.

The value of the total storage capacity required for each rainwater use is a rough index of

the costs, however the cost quantification of such systems is more complex (e.g., restoration

works to build rainwater distribution plants inside buildings, the construction of collection

networks to link the buildings involved in RWH for public use, etc.). Moreover, the benefits

are not limited to the reduction of the water footprint, the mitigation of damages due to urban

flooding and economic savings. A feasibility analysis should also consider Nature-Based Solu-

tions (e.g., SUDS, LID) as real alternatives to classical tanks.

In this paper, some of the approximations that were introduced to resolve the problem of

the lack of data may have affected the results: the scarcity of data mainly pertains to the statisti-

cal data of the building features and the data on the green areas, thus improvements in national

and municipal statistical databases are desirable. In this way, future studies could obtain more

robust results to provide a valid tool for municipality planning.
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